
( ~  Pergamon 
S0021-8928(96)00023-8 

1. AppL Maths Mechs, Vol. 60, No. 2, pp. 173--182, 1996 
Copyright © 1996 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
0021-8928/96 $24.00+0.00 

THE MAXIMUM PRINCIPLE FOR POSITIONAL 
CONTROLS AND THE PROBLEM OF 

OPTIMAL SYSTEM SYNTHESISt 

L. T. A S H C H E P K O V  and  N. I. B A R A N C H I K O V A  

Vladivostok 

(Received 22 March 1995) 

An analogue of Pontryagin's maximum principle is derived in the class of positional controls (functions of the phase state and 
the time [1]). Corresponding adjoint first-order linear partial differential equations are presented. The use of the necessary 
conditions of optimality to synthesize optimal systems is described. © 1996 Elsevier Science Ltd. All fights reserved. 

The well-known theoretical approaches to optimal system synthesis include the maximum principle [2], 
dynamic programming [3], the sufficient optimum conditions [4] and the theory of fields of extremals 
[5]. Each approach uses premises and constructions that determine and sometimes also limit its area 
of application. These are, for example, the assumption in [3] that the Bellman function is smooth, the 
uncertainty in the choice of auxiliary functions in [4] and the need in [2, 5] to solve a family of optimal 
open-loop control problems with arbitrary initial values of the trajectories. 

In this paper we will present an analogue of Pontryagin's maximum principle [2] directly in the class 
of positional controls. As the object of the investigation we have chosen the relatively simple terminal 
control problem with free right end of the trajectory. To obtain the necessary conditions of optimality 
we use the technique of spiked variation of the control and small variation of its surfaces of discontinuity. 
At the stage when the principal terms of the increment to the object functional are being represented 
one derives the adjoint linear system of partial differential equations with appropriate boundary 
conditions - the so-caUed adjoint boundary-value problem. On the assumption that the adjoint boundary- 
value problem possesses a continuous piecewise-smooth solution, it is shown that an optimal positional 
control maximizes the Hamiltonian. 

By analogy with [2], we shall call our result the positional maximum principle. We shall also show 
how this result is related to Pontryagin's maximum principle and to the fundamental equation of dynamic 
programming, and extend it to the case when the control has several surfaces of discontinuity. The 
possibilities of the positional maximum principle are demonstrated for linear and linear-quadratic 
optimal control problems. A procedure is proposed for synthesizing a piecewise-constant control, and 
an illustrative example is considered. 

Some clarification is in order concerning our basic assumptions and the procedure employed. The 
maximum principle will be proved, for simplicity, for a positional control with one surface of discontinuity. 
It is assumed that the trajectories generated by the control either cut the surface of discontinuity without 
unilateral tangency or remain upon it. This pattern is characteristic for many of the synthesis problems 
that have been solved [2, 6]. The results obtained for a single surface of discontinuity can be easily 
extended to the case. • of several such surfaces, provided the latter do not intersect in the part of space 
under consideration. The appropriate generalizations will be stated without proof. 

1. STATEMENT OF THE PROBLEM 

Consider the optimal control problem 

J = ~ ( x ( t  i )) ~ min, k = f ( x , u , t )  

u(x,t)~U, (x,t)~RnxT (1.1) 
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where ~: R ~ ---) R is differentiable, ~ / ~  x U x T ~ / ~  is continuous together with the matrices of 
derivativesf~ and f,, of the function, U is a non-empty bounded subset R ~ and T = [0, tl] is a fixed dosed 
interval on the real axis. 

A piecewise-continuous function u" R ~ x T --4 U with piecewise-continuous derivative ux is called a 
control. A solution of the vector differential equation (1.1) for a given control and initial values are 
defined as in Filippov [7]. If the initial values lie in the domain of smoothness of the control, the solution 
is identical in a small neighbourhood of the initial values with the classical solution, and it exists and 
is unique [8] by virtue of well-known results in the qualitative theory of differential equations. For other 
initial data the solution need not be unique. In that case we shall associate with the control u(x, t) and 
the initial values x0 ~ R ~, to E T one of the solutions x(t, Xo, to) of the differential equation (1.1) for 
which the function ~(x(tl ,  Xo, to)) has its least value. All the solutions are assumed to be extendible to 
the interval T, whatever the control. 

Let u(x, t) be an arbitrary control, which will remain fixed throughout. With it we associate the set 
D C R n x Trilled out by the corresponding integral curves of Eq. (1.1). This means that, together with 
any point (x0, to), D will contain the entire curve (x(t, Xo, to), t), to <<- t ~ tl. The set D may be either 
closed or not; it may even consist of a single integral curve. 

Let us call the control u(x, t) optimal on D if, for every point (x0, to) in D and any control ~(x, t), the 
following inequality holds 

• (x(tl, Xo, to)) <~ ~(Y¢(q, Xo, to )) 

where (2(q, x0, to) is the integral curve corresponding to ~(x, t) that starts from the point x0, t0)wnot 
necessarily remaining with D. 

The purpose of this paper is to derive and discuss the necessary conditions of optimality for positional 
controls. 

2. N O R M A L  C O N T R O L  

Retaining the previous notation, let us assume that u(x, t) has a single smooth surface of discontinuity 
P of dimension n, defined in the neighbourhood of D by the equation p(x, t) = 0. The scalar function 
p is assumed to be continuously differential in the neighbourhood of D with non-zero gradient 
Vp = (Px, Pt) at points of P. The restrictions of the functions u(x, t) and f(x, u(x, t), t) to the domains 
p > 0 and p < 0 will be denoted by u+-(x, t), f~(x, t), respectively. In addition, we shall assume 
that 

b +- (x, t) = Px (x, t)" f+ (x, t) + p, (x, t) 

Here and below we use the prime to denote transposition. The notation a'b will denote the scalar product 
of (column-)vectors a, b. 

We shall call a control u(x, t) normal on the set D if the following conditions are satisfied 
1. the functions u- and u ÷ possess extensions, differentiable with respect to x and continuous with 

respect to t, from the domains p < 0 and p > 0, respectively, to a small neighbourhood of the surface 
P, preserving their values on U; 

2. in a small neighbourhood o f P w e  havep- > 0,p + > 0 orp- > 0,p + = 0; 
3. at each point (x, t) e P the union of the closures of the sets 

{v ~ U: px(X,t)" f ( x , v  ,t) + p,(x, t)  > 0} 

{o ~ U: px(x,t)" f ( x .u  ,t )+ p,(x, t)  < 0} 

is the whole of U; 
4. a continuous solution ~(x, t) of the adjoint boundary-value problem 

• t +~llxf(X,U(X,t), t) = -[ fx (x ,u(x , t ) , t )+fu(x ,u(x , t ) , t )Ux(X, t ) ] '~ ,  

¥ (x , t l )  = - ~ x ( x )  (2.1) 

exists on the whole set D and is continuously differentiable in the domains of smoothness of the control. 
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Finally, a normal control u(x, t) is said to be extremal in D if, at each point (x, t) e D, the following 
conditions is satisfied 

¥(x ,  t)" f ( x ,  u(x ,  t), t) = max ¥(x ,  t) '  f ( x , u ,  t) (2.2) 
v E U  

3. F O R M U L A T I O N  AND D I S C U S S I O N  OF T H E  M A I N  R E S U L T  

Theorem.  (The positional maximum principle.) An optimal normal positional control on D is extremal 
on that set. 

The proof is postponed to the Appendix. Let us analyse the theorem. 
In a domain in which a normal extremal control is smooth, we have 

[t'u(X, u(x, t), t)ux(x, t)]'~(x, t) = 0 

Indeed, for any two nearby points (x, t), (x + Ax, t) in the smoothness domain of an extremal control 
we may write, using condition (2.2) 

V(x, O'[f(x, u(x + At, t), t) -I~x, u(x, t), t)] ~< 0 

Hence, using the fact that Ax is small and arbitrary, standard arguments yield the desired result. 
Thus, in the smoothness domain of an extremal control, the differential equations of boundary-value 

problem (2.1) may be simplified as follows: 

• t + vdx[(x, u(x, t), t) = -A(x,  u(x, t), t) '~ (3.1) 

We will now show the relation of this theorem to Pontryagin's maximum principle [2] for the problem 

J = O(x( t l ) )  -'~ min, J/ =J(x, u, t) 

x(to) = Xo, u(t) ~ U, t e [to, tt] 
(3.2) 

for fixed x0 and to in the class of piecewise-continuous openqoop controls. Assume that an optimal process 
u(t) ,  x ( t )  exists in this problem and that the control u( t )  has at most one point of discontinuity in the 
interval (to, tl) (for the extension to any finite number of points of discontinuity see Section 5). Suppose, 
further, that ~(t) is a suitable continuous solution of the adjoint system 

= -fr(x(t) ,  u(t), t)ql/, ~l/(tt) = --~x(x(tl)) 

We will take D to be the integral curve (x(t),  t), to <~ t <~ tl. Set u(x,  t) -- u(t) ,  ¥(x, t) --- ¥(t)  in a small 
neighbourhood of  D. Then the control u(x, t) is normal on D by the above theorem, the maximum 
condition (2.2) holds at each point (x, t) e D, i.e. 

~( t ) "  f ( x ( t ) , u ( t ) , t )  = m a x ~ ( t ) "  f ( x ( t ) , u , t ) ,  t ~ [t0,q] 
uEU  

Thus, for an optimal open-loop process the theorem yields Pontryagin's maximum principle as 
formulated in [9]. 

4. T H E  R E L A T I O N  OF T H E  T H E O R E M  TO D Y N A M I C  P R O G R A M M I N G  

Let B(x0, to) denote the infimum of values of the object functional of problem (3.2). We know that 
at points where B(x,  t) is continuously differentiable it satisfies the fundamental equation of dynamic 
programming (Belhnan's equation) 

V t + min V ' j ( x , u  , t )  = O, VI,=, t = dO(x) 
u~U 

(4.1) 

Let C C R n x T be a domain in which the boundary-value problem (4.1) has a solution V(x, t) with 
continuous partial derivatives V,= and Vn and such that a function u: C ---> U exists, a differentiable with 
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respect to x, for which the following equality holds identically in (x, t) ~ C 

V t (x ,  t) + rain V x (x,  t)" f ( x , v ,  t) = V t (x, t) + V x (x, t)" f ( x ,  u(x,  t), t) = 0 
v ~U 

(4.2) 

Differentiation of identity (4.2) with respect to x shows that the function 

¥(x, t) = -Vr(x, t) (4.3) 

satisfies the conditions of the adjoint boundary-value problem (2.1). In that situation the extremality 
of the control u(x, t) follows from (4.2). 

The relationship between the adjoint function of the positional maximum principle and the solution 
of Bellman's equation is not always valid. For example, considering the problem 

j=x2(l)----> rain, ~ = u ,  lul <- l, o~<t~<l  

we find that Bellman's equation 

v,-Ivxl = 0 ,  vl~_i=x 2 

has a set of solutions that are continuous on R x [0, 1] and continuously differentiable (forx ;~ O) 

V(x,t)=I(lFxl[ft+-tl)21, [x[> l - t  
L (11 - ) ,  Ixl ~ l - t  

where F(z) is an arbitrary smooth non-decreasing function, F(0) = Fz(O) = O. 
The fundamental relations of the positional maximum principle 

~ ,  + Wxu(x ,  t) = O, W l r=l = - 2 x ,  W(x,  t )u(x ,  t) = I W(x ,  t) l 

for the unknown solution u(x, t), together with the continuity condition for ~(x, t), yield a unique adjoint 
function 

~(x , t )={O2(Ixl+t-I )s ignx,  Ix[ > l - t  

Ixl <- l - t 

If F(z) ~ 0, Eq. (4.3) fails to hold in the domain I x I < 1 - t. 
As this example shows, Bellman's equation may yield extraneous solutions. If one does not appeal 

to additional considerations and remains within the bounds of dynamic programming, it is impossible 
to reject these extraneous solutions without calculating the values of B(x, t), i.e. the solutions of the 
initial optimal control problem with initial data as parameters. Clearly, once the problem becomes more 
complicated, this becomes practically impossible. 

Changing the sign of the object functional in the example, we obtain the problem 

J = -x2 (l) ---> min, Jc = u, lul<~l, 0~<t~<l 

in which the minimum of the object functional 

8(x,  t) = - ( I x l -  t + 0 z 

is not a continuously differentiable function ofx  at x = 0. In that case there is no formal justification 
for using the classical Bellman equation. 

Applying the positional maximum principle to the problem, we obtain a set of relations 

ql, + ~xu(x, t) = O, ~1/I,=1 = -2x 

~(x, t)u(x, t) = IV(x, t) l (4.4) 
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for the unknown o3ntrol u(x, t). We shall seek u(x, t) as a step function. By (4.4) 

Ul(X, t) = 1, ¥1(x, t) = 2 ( x -  t + 1), if x I> t -  1 (4.5) 

u2(x, t) = - l ,  ¥ 2 ( x , t ) = 2 ( x + t - 1 ) ,  if x<~ l - t  (4.6) 

The characteristic curves of the adjoint boundary-value problem corresponding to controls (4.5) and 
(4.6) cover the domain I x [ ~< 1 - t twice. Let us single out from each pair of characteristics issuing 
from an arbitrary fixed point of the domain the characteristic with the least value of the objective 
functional. As a result we obtain two normal extremal controls 

Ul(X , t) = 1 on the setx I> 0 (4.7) 

Uz(X, t) = -1 on the set x ~< 0 (4.8) 

It is clear that eacll of these is optimal on the appropriate set. 
Thus, in the above problem the positional maximum principle defines two domains in the space R x 

[0, 1] and extremalt controls in those domains. 

5. E X T E N S I O N  OF T H E  T H E O R E M  

The proof of the theorem presented in the appendix extends to the case in which the control has 
several surfaces of discontinuity, provided one modifies the notion of normality as follows: Suppose 
one has a domain D C R ~ x T and a control u(x, t) with m t> 1 surfaces of discontinuity/1, P2, . . . .  Pm 
on D, of dimension n, defined by the equations 

p1(x, t) = O, p2(x, t) = 0 . . . . .  pro(X, t) = 0 

respectively. Each functionpi: D --¢ R, i = 1, 2 . . . .  , m, is assumed to be continuously differentiable in 
the neighbourhood ofF,  with non-zero gradient at the points ofPi .  Let  Qi denote a small neighbourhood 
of the surface Pi and Q~-, Q~: the intersections of Qi with the domainspi < O, pi > 0, respectively. 

We will call a control u(x, t) normal in D if the following conditions hold: 
1. the surfaces 1"1, P2, • • •, Pm do not intersect one another on D; 
2. the restrictions of u(x, t) to the half-neighbourhoods Q~-, Q+ 

% = u7, ul¢  = 

can be continued as functions differentiable with respect tox  and continuous in t to Qi, conserving their 
values in U for each fixed i = 1, 2 , . . . ,  m; 

3. in Qi the derivatives 

"+ t '  + ps (x , t )  = Pix(X, ) f ( x , u ? ( x , t ) , t ) +  p#(x, t )  

satisfy the conditions 

,b7 > 0 ,  /~+ >0 ,  i=1 ,2  ..... m - 1  

,67. >0,  Pro'+ = 0  

4. at each point (x, t) ~ Pm the union of  the closures of the sets 

{ v ~ U: p, .~(x, t)'l(x, v, t) + p. , , (x ,  t) > 0 } 

{ v ~ U: p.t~(x, t)'~x, v, t) + p..(x,  t) < O} 

is the whole of U; 
5. the adjoint boundary-value problem (2.1) has a continuous solution, defined on the whole 

of D. 



178 L.T.  Ashehepkov  and N. I. Baranchikova  

With normal  controls  thus defined, the posit ional  m a x i m u m  principle remains  valid in the same  
formula t ion  as before.  

6. E X A M P L E S  

The use of the positional maximum principle will be illustrated by two familiar examples. 

Examp/e I (the linear problem [10]) 

J = c'x(t,) ~ rain, :t = A(t)x + b(u, t) 

u(x,t)~ U, (x,t)E R S x T  

where the function O(x) = c~ is linear and the functionf(x, u, t) = A(t)x + b(u, t) satisfies the assumptions listed 
previously. 

Define functions ¥: T - *  R n and u: T ~ U by 

~ - - - A ( t ) ' ~ ,  ¥ ( t l ) = - c ,  u ( t ) = a r g m a x ¥ ( t )  b(u , t )  
v e U  

and assume that u(t) is piecewise-continuous in the interval T. Then the pair 

u(x, 0 E u(t), ¥(x, 0 = ¥(t) 

defined on the set R n x T, satisfies the normality conditions of Sections 4 and the assumptions of the positional 
maximum principle. A direct calculation of the objective functional and the evaluation of its minimum show that 
u(x, t) is indeed an optimal control on the set R ~ x T. 

Examp/e 2 (the linear quadratic problem: analytical regulator design [11]) 

J = ~ y ( t  I ) ~ rain, J? = A(t)x + B(t)u 

~ff ix 'P(t)x+u'Q(t)u,  u(x ,y , t )eU,  (x ,y , t )ER n+l x T  

where A(t), B(t), P(t), Q(t) are continuous matrices of appropriate dimension on T, P(t) is symmetric and positive 
semidefinite, Q(0 is symmetric and positive definite for all t e T and Uis an open sphere of sufficiently large radius 
inR'.  

Since the domain of the control is open, the fundamental relations of the positional maximum principle 
become 

Yt + ¥ x ( A x  + Bu)+(x" Px +u'Qu)¥ y + A ' ¥  + 2xPx =O 

Xt +X~(Ax+ Bu)+(x" Px +u' Qu)x~. = 0 

¥I,_-,,--o. B' +2ze.--o 

(for brevity we have omitted the arguments, X = ¥n+1)- These conditions are satisfied in the domain D = R n+l × 
7"1 if we put 

~(x ,y , t )  = K(t)x, •(x,y,t)=-1/2 

u(x,y.t) = Q-I ( t)B(t) 'K(t)x 

and define K(t) to be a solution on T1 c T of the matrix Riccati equation 

!(+ KA(t) + A(t)'K + KB(t)Q"I(t)B(t)'K - P(t) ffi 0, K(t I) ffi 0 

This solution of the problem of analytical regulator design is identical with those produced by the variational 
method [11] and by dynamic programming [3]. 

7. S Y N T H E S I S  O F  P I E C E W I S E - C O N S T A N T  C O N T R O L S  

Suppose  that  the function u --~ f(x, u, t) in p rob l em (1.1) is affme and tha t  U is a finite set  o f  points  
o r  a polyhedron.  Then  an ext remal  control  u(x, t) is general ly a s tep function. To find it, one  can use 
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an analogue of  the me thod  of  re t rograde  mot ion  [2]. We will describe the main  opera t ions  to be  
p e r f o r m e d  at s tep k, k = 1, 2 , . . . .  

Put  B = R ~ x (0, oo) and suppose  that  the following are known for  k 1> 0: a vector  u k in U, a set 
Dk C B with boundary  0D k and a funct ion ~k: OD k __> R n. 

Le t  us find a cont inuous  solution ¥(x,  w, t) of  the  boundary-value  p rob l em (see (3.1)) 

• t + V J ( x , w , t )  = - f x ( X , W , t ) ' ¥ ,  ~1~o~ = ~/k(x ' t )  (7.1) 

with vec tor  p a r a m e t e r  w • R r. Fur the rmore ,  define w = u k÷l • U and a maximal  set Dk_l C B\t_J/k= 0Di 
by the  condit ions 

~ ( x ,  u tc+l , t)" f ( x ,  u k+l , t) = max ~/(x, u k+l , t) '  f ( x , v ,  t), (x, t) ~ D/~+I 
u CU 

(7.2) 

On  the set  Dt,+x we put  

u(x, t) = u k+l, ~t:+l(x, t) = ~(x ,  u k÷l, t) 

T h e  process  is con thmed  i fDk+l  = O.  For  k = 0 we define Do = / ~  x (tl, oo), ¥°(x, t) = -*x(x) ,  letting 
u ° be  any point  of  U. 

T h e  p rocedure  needs  some explanation.  I f  the integral  curves of  the equa t ion  :t = f (x ,  w, t) cut the 
bounda ry  0D k without  tangency, the boundary-va lue  p rob lem (7.1) is locally solvable by the me thod  of  
characteris t ics  [8], which extends in a na tura l  way to the case of  a system of  f irst-order l inear part ial  
differential  equat ions.  To carry out  the opera t ion  (7.2) and construct  a maximal  domain  Dk+ 1 it is 
necessary to solve non-l inear  equat ions and inequalities---this involves certain difficulties, reflecting the 
complexi ty  of  the  control  synthesis p rob l em itself. 

The synthesis procedure may be illustrated by a simple example 

J=-x4(l)---~min, ~=u,  lul  ~< I. 0 ~ < t ~  l 

Here, as in Example 2 above, the minimum of the objective functional 

B(x , t )=- - ( I x l - t+  1) 4 

is a continuous function, continuously differentiable with respect tox, on R x [0, 1] everywhere except on the straight- 
line segmentx = 0, 0 <~ t ~< 1. Formally, therefore, the conditions for application of the classical Bellman equation 
are not satisfied. At the first stage of the synthesis procedure, a literal repetition of the arguments in Section 4 
yields two normal extremal controls (4.7), (4.8) with corresponding adjoint functions 

W l ( x , t ) = 4 ( x - t + l )  3 , x~>0 

¥ 2 ( x , t ) = 4 ( x + t - l )  3, x ~  < 0  

Note that if one replaces the unimodal objective function O(x) = -x 4 in this example by the multimodal function 

then the minimum function B(x, t) of the objective functional will not be continuously differentiable on the 
denumerable set of straight segments x = 4k, 0 <~ t ~< 1, k = 0, _+1, _+2 . . . . .  Hence the problems involved in 
justifying the use of Bellman's equation remain. As the objective function is periodic, it is sufficient to consider 
the synthesis procedure on the set Ix - 4k] ~< 2 for fixed k = 0, _+1, _+2, . . . ,  where it produces a true result. 

A P P E N D I X :  P R O O F  O F  T H E  T H E O R E M  

Suppose the control u(x, t) has a unique surface of discontinuity P C D on D and is normal in the sense of 
the definition of Section 2. To fix our ideas, suppose that in a small neighbourhood Q of P the conditionsp- > 0, 
p÷ ~ 0 are satisfied. (The simpler case p-  > 0, p+ > 0 receives analogous treatment.) Fix an arbitrary point 
(x 0, to) of D in the domain p < 0 and consider the integral curve leaving it under the action of u(x, t), say 
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(x(t) =- x(t, x0, to), t). Assume that  the curve (x(t), t) reaches the surface P at t ime 0 e (to, tl) and remains on P for 
0 <~ t ~< t 1. The other possibilities (the curve does not cut P or lies wholly on P) are t reated in exactly the same way. 

Variation o f  the control and the trajectory. Let us determine the varied control  ~(x, t) and trajectory ~(t) -= 
~(t, x0, to) of system (1.1). 

Choose arbitrary fixed ~ ~ U, x ~ [to, tl), x ~ 0 and a small e > 0. Define ~(x, t) = u if t e [x, x + 0 and 

if t ~ [X, Z + e), where, by definition 

~u-(x , t ) ,  /3(x,t) < 0 
~(x ' t )=[u+(x , t ) ,  /5(x,t) > 0 

(A.1) 

If the inequalities 

Assume that  the function 15p:T ~ R is smooth and of fixed sign on T. By conditions (A.1) and (A.2) and the 
choice of 6p, the varied surface P (the surface of discontinuity of the control  if(x, t) with the equation/~(x, t) = 0) 
is shifted uniformly from 0 into one of the domains p > 0, p < 0. 

We shall now describe the varied trajectory~(t) .  By analogy with [7, 12], one can prove the formula 

For  brevity, let us put  

Yc(t)= x(t)+e?~x(t)+o(e), t o <~t<~tt (A.3) 

where &c(t), for t * x, t ~ 0, is a continuous solution of the variations equation 

(at)" = [fx (x(t) ,u(x(t) , t ) , t )  + fu (x(t) ,u(x(t) , t) , t)u x (x(t) , t ) lat ,  at( t  O) = 0 (A.4) 

satisfying the above jump conditions at t imes x, 0, and o(e) is a vector remainder  term of higher order  of smallness 
than e uniformly in t in the interval [to, tl]. On the right of Eqs (A.4) we have [7] 

u(x( t ) , t )=u- (x ( t ) , t ) ,  ux(x(t) , t . )=ux(x(t) , t ) ,  t o ~<t<O 

u(x( t ) , t )=u  +(xft),t), Ux(X(t),t)=u+(x(t),t) ,  O<~t<~tl 

at(M) = at(s  _+ 0) 

A0¢I ~ =/(x(x), v, X) -1(x(X), u(x(X), x), X) 

~ ( e )  =f-(x(e), o) -y(x(O),  o) 

i50 = -[~ip(0) + px(x(O), O)'at(0--)]/p-(x(O), O) 

But if 

then, instead of (A.7), we have 

X > 0, px(x('t), X)'J~x(x), v, "0 + pt(x(x), "0 > 0 

hold, or  if x < 0, the jump conditions become 

at(x+) = at(x-)  + AO¢I 

at(0+) = ~ 0 - - )  + 80ta(0) 

"t > O, Px(X('O, "O'f(x('O, o, •) + pt(x(X), X) < 0 

~x(x+)  = iSx(x-)  + A u f ix  + ~rAk(x)  

= -[~ip('~) + Px (x(X), '~) 'Au f i r  ]t~- (x(x) ,  x) (A.9) 

at(o+) = at(0--) + ~O~(O) 

A few explanations are in order. Up to terms of order  higher than ~, the variations equation (A.4) and jump 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

[~(x,t) = p(x,t)+eJfp(t) (A.2) 
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conditions (A.7) and (A.9) describe the principal part e&(t) of the increment ~(t) -x(t)  of the trajectoriesat the 
time the control is subject to a spiked variation and the trajectories cut the surfaces of discontinuity P and P. The 
variation of the surface P introduces the arbitrarily chosen function ~( t )  into the jump conditions. As will be evident, 
this entails the need for another necessary optimum condition of the equality type--the continuity of the solution 
of the adjoint system on the surface of discontinuity of the control. 

For points ~ e U satisfying the second inequality of (A.6), at the time x the control is subject to a spiked variation 
of the trajectory~'(t) hits the surface P in the domain/~ > 0, and it remains there for t > x. In the case of (A.8) 
one has an analogous encounter in the domain/~ < 0 and the varied trajectory subsequently returns to P beginning 
at time x + e ~  + o(e). For other points of U it is generally impossible to describe the function ~(t) uniquely to 
within the accuracy needed by formula (A.3). Given condition 3 in the definition of normality, this does not affect 
the generality of the necessary optimum conditions. Finally, one should note that if the definitions of the right- 
hand sides of the differential equations are extended to P, then 

/(x, u(x, t), t)] l, =if(x, t) 

and so one must assume in formulae (A.7) and (A.9) that for x > 0 

Ad'l ~ =l(x(x), u, x) - : ( x ( x ) ,  x) 

The maximum principle. It follows from our assumption about the optimality of the control u(x, t) and from 
representation (A.3) of the varied trajectory that 

• (X(tl)) ~< t~(X(tl) + F.~SX(tl) + o(•)) 

Hence, since e is small and positive, we obtain 

~x(X(tl))'SX(tl) >I 0 (A.10) 

In order to express ~this inequality in terms of the parameters of the variation of the control, we use the solution 
~(x, t) of the adjoint boundary-value problem. Let y-(x, t), ~+(x, t) denote the restrictions of this solution to the 
domains p < 0, p > 0, respectively. In view of the normality of the control u(x, t) and the special features of 
the method of characteristics [8], the functions ~±(x, t) may be extended smoothly to a small neighbourhood 
of the surface P so tJhat condition (2.1) remains valid when u(x, t) is replaced by the extensions of u+-(x, t). 
Consequently, the corapound function 

IW -(x( t ) , t ) ,  to <~t<~O 

W( t )=[~+(x ( t ) , t ) ,  O<~t<~tl 

is defined and continuous in the segment [to, tl], and it satisfies the following system of ordinary differential equations 
in the intervals (to, 0) and (0, tl) 

W = -[ fx  (x(t) ,u(x(t) , t ) , t )  + 

+fu(x(t) ,u(x(t) , t) , t)Ux(X(t), t)] 'W, W(t I) = - ~ x ( x ( t l ) )  (A.11) 

where u(x(t), t), Ux(X(t), t) are understood in the sense of (A.5). 
In the intervals in which the solutions of Eqs (A.4) and (A.11) are smooth, the function ~(t)" ~x(t) is constant 

[2], and therefore its increment at the ends of the interval (to, tl) equals the sum of the jumps at the points x, 0 

+ v' xl _ 

Taking the initial data (A.4), (A.11) and jump conditions (A.7) into account, we deduce from this and from (A.10) 
that 

tl~x(x(J'l))'~(tl) = -ufl('r+)'AJ I x -  IdSP(0) + [~P(0--) - tlJ(0+) - taPx(X(O), 0)]'~x(0--) 1> 0 

where 

~t = -u,'(o+ )'6~t(o)/p-(x(O), o) 

By the continuity of ~(t) and the arbitrariness of 8p(0), we conclude from the inequality that 

'tJ(0)'~(O) = 0 (A.12) 
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V(x)'Auf] ~ ~< 0 (A.13) 

In case (A.8), we also conclude, besides (A.12) and (A.13), that 

ul(x)'Ai~(x) = 0 (A.14) 

Note that these last three conditions are not independent: Eqs (A.12) and (A.14) follow from (A.13) by letting 
x --) 0. Since inequality (A.13) holds for any trajectoryx(t) with the properties described above, and by continuity 
it remains true for all x ~ [t o tl], a) ~ U, it follows that at points (x, t) ~ D,p(x ,  t) < 0 

~(x, t)'[](x, u, t) - f ( x ,  u(x, t), t)] ~< 0 

Similar arguments yield the same inequality for the other points of D. Consequently, the optimal control is 
extremal in D, completing the proof of the theorem. 
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